Author:
Nguyen Duy Khanh,Tran Ngoc Thanh Thuy,Chiu Yu-Huang,Gumbs Godfrey,Lin Ming-Fa
Abstract
AbstractThe diverse structural and electronic properties of the Si-adsorbed and -substituted monolayer graphene systems are studied by a complete theoretical framework under the first-principles calculations, including the adatom-diversified geometric structures, the Si- and C-dominated energy bands, the spatial charge densities, variations in the spatial charge densities and the atom- and orbital-projected density of states (DOSs). These critical physical quantities are unified together to display a distinct physical and chemical picture in the studying systems. Under the Si-adsorption and Si-substitution effects, the planar geometric structures are still remained mainly owing to the very strong C–C and Si–C bonds on the honeycomb lattices, respectively. The Si-adsorption cases can create free carriers, while the finite- or zero-gap semiconducting behaviors are revealed in various Si-substitution configurations. The developed theoretical framework can be fully generalized to other emergent layered materials. The Si-doped graphene systems might be a highly promising anode material in the lithium-ion battery owing to its rich potential properties.
Funder
Ministry of Science and Technology of Taiwan (MOST), Republic of China
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献