Natural resource-derived NiO nanoparticles via aloe vera for high-performance symmetric supercapacitor

Author:

Bulla Mamta,Kumar Vinay,Devi Raman,Kumar Sunil,Sisodiya Avnish Kumar,Dahiya Rita,Mishra Ajay Kumar

Abstract

AbstractThis investigation reported a one-step green synthesis of nickel oxide nanoparticles (NiO NPs) using aloe vera leaves extract solution for their application in a supercapacitor. This method used aloe vera leaves as a reducing agent, which is very simple and cost-effective. The synthesized NPs were thoroughly characterized using various techniques. The X-ray diffraction analysis unequivocally confirmed the crystalline nature; field emission scanning electron microscopy and transmission electron microscopy images showed different shapes and forms of an agglomerated cluster of synthesized NPs. The absorption spectra were recorded from UV visible spectroscopy, while Fourier transform infrared spectroscopy provided insights into the functional groups present. Electrochemical assessments were carried out via cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. These experiments were performed using a 2 M KOH electrolyte within a 1.0 V potential window. Impressively, the single electrode displayed a remarkable specific capacitance of 462 F g−1 at a scan rate of 1 mV s−1 and 336 F g−1 at a current density of 0.76 A g−1. Further, a symmetric two-electrode device (NiO||NiO) has been successfully fabricated by employing a separator between the electrodes. The device exhibited an exceptional specific capacitance of approximately 239 F g−1, along with an energy density of 47.8 Wh kg−1 and a power density of 545 W kg−1 at 1 A g−1 current density within a 1.2 V potential window. The fabricated device also shows a retention capacity of 89% at 10 A g−1 after 2000 cycles with 114% of columbic efficiency. The present study underscores the effectiveness of the green synthesis approach in producing NiO NPs and establishes their potential as highly promising candidates for supercapacitor applications, showcasing both excellent electrochemical performance in a three-electrode system and remarkable stability in a practical two-electrode device. The results collectively highlight the efficacy of the green approach in producing NiO NPs, establishing its potential as a highly promising candidate for supercapacitor application.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3