Author:
Liu Shichao,Gao Hongjun,Cheng Rui,Wang Yujun,Ma Xiulan,Peng Chang,Xie Zhonglei
Abstract
AbstractIn order to clarify the mechanism and effect of bentonite-supported nanoscale zero-valent iron (nZVI@Bent) on Cr(VI) removal in soil suspended liquid, nZVI@Bent was prepared by liquid-phase reduction method in this research. A number of factors, including the mass ratio of Fe2+ to bentonite during preparation of nZVI@Bent, nZVI@Bent dosage, soil suspended liquid pH value and reaction temperature were assessed to determine their impact on the reduction of Cr(VI) in soil suspended liquid. The nZVI@Bent was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to analyze the mechanism of removal of Cr(VI) from the soil. The results showed that the temperature of soil suspended liquid had a significant effect on the removal efficiency. Calculated by the Arrhenius formula, nZVI@Bent removes Cr(VI) from the soil suspended liquid as an endothermic reaction with a reaction activation energy of 47.02 kJ/mol, showed that the reaction occurred easily. The removal of mechanism Cr(VI) from the soil by nZVI@Bent included adsorption and reduction, moreover, the reduction process can be divided into direct reduction and indirect reduction. According to XPS spectrogram analysis, the content of Cr(III) in the reaction product was 2.1 times of Cr(VI), indicated that the reduction effect was greater than the adsorption effect in the process of Cr(VI) removal. The experiment proved that nZVI@Bent can effectively remove Cr(VI) from soil suspension, and can provide technical support for repairing Cr(VI)-polluted paddy fields.
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献