Author:
Joshi Prasoon,Dhar Riddhiman
Abstract
AbstractAccurate classification of cancers into their types and subtypes holds the key for choosing the right treatment strategy and can greatly impact patient well-being. However, existence of large-scale variations in the molecular processes driving even a single type of cancer can make accurate classification a challenging problem. Therefore, improved and robust methods for classification are absolutely critical. Although deep learning-based methods for cancer classification have been proposed earlier, they all provide point estimates for predictions without any measure of confidence and thus, can fall short in real-world applications where key decisions are to be made based on the predictions of the classifier. Here we report a Bayesian neural network-based model for classification of cancer types as well as sub-types from transcriptomic data. This model reported a measure of confidence with each prediction through analysis of epistemic uncertainty. We incorporated an uncertainty correction step with the Bayesian network-based model to greatly enhance prediction accuracy of cancer types (> 97% accuracy) and sub-types (> 80%). Our work suggests that reporting uncertainty measure with each classification can enable more accurate and informed decision-making that can be highly valuable in clinical settings.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献