In silico study of heterogeneous tumour-derived organoid response to CAR T-cell therapy

Author:

Luque Luciana MelinaORCID,Carlevaro Carlos Manuel,Rodriguez-Lomba Enrique,Lomba Enrique

Abstract

AbstractChimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapy for treating cancers. This method consists in modifying the patients’ T-cells to directly target antigen-presenting cancer cells. One of the barriers to the development of this type of therapies, is target antigen heterogeneity. It is thought that intratumour heterogeneity is one of the leading determinants of therapeutic resistance and treatment failure. While understanding antigen heterogeneity is important for effective therapeutics, a good therapy strategy could enhance the therapy efficiency. In this work we introduce an agent-based model (ABM), built upon a previous ABM, to rationalise the outcomes of different CAR T-cells therapies strategies over heterogeneous tumour-derived organoids. We found that one dose of CAR T-cell therapy should be expected to reduce the tumour size as well as its growth rate, however it may not be enough to completely eliminate it. Moreover, the amount of free CAR T-cells (i.e. CAR T-cells that did not kill any cancer cell) increases as we increase the dosage, and so does the risk of side effects. We tested different strategies to enhance smaller dosages, such as enhancing the CAR T-cells long-term persistence and multiple dosing. For both approaches an appropriate dosimetry strategy is necessary to produce “effective yet safe” therapeutic results. Moreover, an interesting emergent phenomenon results from the simulations, namely the formation of a shield-like structure of cells with low antigen expression. This shield turns out to protect cells with high antigen expression. Finally we tested a multi-antigen recognition therapy to overcome antigen escape and heterogeneity. Our studies suggest that larger dosages can completely eliminate the organoid, however the multi-antigen recognition increases the risk of side effects. Therefore, an appropriate small dosages dosimetry strategy is necessary to improve the outcomes. Based on our results, it is clear that a proper therapeutic strategy could enhance the therapies outcomes. In that direction, our computational approach provides a framework to model treatment combinations in different scenarios and to explore the characteristics of successful and unsuccessful treatments.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3