Topological phase transition in the antiferromagnetic topological insulator MnBi$$_2$$Te$$_4$$ from the point of view of axion-like state realization

Author:

Shikin A. M.,Estyunina T. P.,Eryzhenkov A. V.,Zaitsev N. L.,Tarasov A. V.

Abstract

AbstractThis work aims to study the conditions of topological phase transition (TPT) between the topological and trivial states in the antiferromagnetic topological insulator (AFM TI) MnBi$$_2$$ 2 Te$$_4$$ 4 and propose some theory about the relationship of this TPT with the possibility of axion-like state realization in this material. Using the density functional approach we have analyzed the changes in the electronic and spin structure of topological surface states (TSSs) and the nearest conduction and valence bands (CB and VB) including the changes in the bulk band gap as well as the Dirac point (DP) gap in TSSs under variation of the spin-orbit coupling strength in the region of the TPT for infinite crystal and slab with a surface both. We have shown that in both cases the TPT occurs with inversion of the contributions of the Bi-$$p_z$$ p z and Te-$$p_z$$ p z states of different parity at the gap edges related to change in the gap sign. In the case of surface calculations, the Bi-$$p_z$$ p z and Te-$$p_z$$ p z states at the edges of the bulk band gap and their inversion at the TPT point are transformed into the TSSs with an energy gap at the DP. In this case the TPT takes place without closing the band gap, i.e. with a “jump” through zero and the formation of the nonzero gap during such a transition. Our calculations show that the TPT point is also characterized by an inversion of the out-of-plane spin polarization $$s_z$$ s z at the $$\Gamma$$ Γ point for lower and upper parts of the Dirac cone and a significant spatial redistribution of the TSSs between the surface and the bulk. We suppose that the nonzero Dirac gap can have some relationship with the formation of the axion-like state, which presumably couples nonmagnetic spin-orbit and magnetic contributions at the boundary between the topological and trivial phases for a system with parameters close to the TPT conditions. A practically realized system is proposed - the AFM TI with a stoichiometry close to that of MnBi$$_2$$ 2 Te$$_2$$ 2 Se$$_2$$ 2 with partial (about 50%) substitution of Te atoms for Se atoms in MnBi$$_2$$ 2 Te$$_4$$ 4 which can be an experimental platform for the implementation and experimental analysis of the TPT and the corresponding possibility of the axion-like state realization in Condensed Matter. Besides, such system could serve as a good platform for studying the dynamic axion effect, where the axion field fluctuations are maximised when a small external field is applied to the system which state is close to the TPT.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3