Integrating multi-platform genomic datasets for kidney renal clear cell carcinoma subtyping using stacked denoising autoencoders

Author:

Gu Tongjun,Zhao Xiwu

Abstract

Abstract Clear cell renal cell carcinoma (ccRCC) is highly heterogeneous and is the most lethal cancer of all urologic cancers. We developed an unsupervised deep learning method, stacked denoising autoencoders (SdA), by integrating multi-platform genomic data for subtyping ccRCC with the goal of assisting diagnosis, personalized treatments and prognosis. We successfully found two subtypes of ccRCC using five genomics datasets for Kidney Renal Clear Cell Carcinoma (KIRC) from The Cancer Genome Atlas (TCGA). Correlation analysis between the last reconstructed input and the original input data showed that all the five types of genomic data positively contribute to the identification of the subtypes. The first subtype of patients had significantly lower survival probability, higher grade on neoplasm histology and higher stage on pathology than the other subtype of patients. Furthermore, we identified a set of genes, proteins and miRNAs that were differential expressed (DE) between the two subtypes. The function annotation of the DE genes from pathway analysis matches the clinical features. Importantly, we applied the model learned from KIRC as a pre-trained model to two independent datasets from TCGA, Lung Adenocarcinoma (LUAD) dataset and Low Grade Glioma (LGG), and the model stratified the LUAD and LGG patients into clinical associated subtypes. The successful application of our method to independent groups of patients supports that the SdA method and the model learned from KIRC are effective on subtyping cancer patients and most likely can be used on other similar tasks. We supplied the source code and the models to assist similar studies at https://github.com/tjgu/cancer_subtyping.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3