Scaling theory of fractal complex networks

Author:

Fronczak Agata,Fronczak Piotr,Samsel Mateusz J.,Makulski Kordian,Łepek Michał,Mrowinski Maciej J.

Abstract

AbstractWe show that fractality in complex networks arises from the geometric self-similarity of their built-in hierarchical community-like structure, which is mathematically described by the scale-invariant equation for the masses of the boxes with which we cover the network when determining its box dimension. This approach—grounded in both scaling theory of phase transitions and renormalization group theory—leads to the consistent scaling theory of fractal complex networks, which complements the collection of scaling exponents with several new ones and reveals various relationships between them. We propose the introduction of two classes of exponents: microscopic and macroscopic, characterizing the local structure of fractal complex networks and their global properties, respectively. Interestingly, exponents from both classes are related to each other and only a few of them (three out of seven) are independent, thus bridging the local self-similarity and global scale-invariance in fractal networks. We successfully verify our findings in real networks situated in various fields (information—the World Wide Web, biological—the human brain, and social—scientific collaboration networks) and in several fractal network models.

Funder

Warsaw University of Technology within the Excellence Initiative: Research University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3