Sustainable coatings for green solar photovoltaic cells: performance and environmental impact of recyclable biomass digestate polymers

Author:

Alhodaib Aiyeshah,Yahya Zeinebou,Khan Osama,Equbal Azhar,Equbal Md Shaquib,Parvez Mohd,Kumar Yadav Ashok,Idrisi M. Javed

Abstract

AbstractThe underutilization of digestate-derived polymers presents a pressing environmental concern as these valuable materials, derived from anaerobic digestion processes, remain largely unused, contributing to pollution and environmental degradation when left unutilized. This study explores the recovery and utilization of biodegradable polymers from biomass anaerobic digestate to enhance the performance of solar photovoltaic (PV) cells while promoting environmental sustainability. The anaerobic digestion process generates organic residues rich in biodegradable materials, often considered waste. However, this research investigates the potential of repurposing these materials by recovering and transforming them into high-quality coatings or encapsulants for PV cells. The recovered biodegradable polymers not only improve the efficiency and lifespan of PV cells but also align with sustainability objectives by reducing the carbon footprint associated with PV cell production and mitigating environmental harm. The study involves a comprehensive experimental design, varying coating thickness, direct normal irradiance (DNI) (A), dry bulb temperature (DBT) (B), and relative humidity (C) levels to analyze how different types of recovered biodegradable polymers interact with diverse environmental conditions. Optimization showed that better result was achieved at A = 8 W/m2, B = 40 °C and C = 70% for both the coated material studied. Comparative study showed that for enhanced cell efficiency and cost effectiveness, EcoPolyBlend coated material is more suited however for improving durability and reducing environmental impact NanoBioCelluSynth coated material is preferable choice. Results show that these materials offer promising improvements in PV cell performance and significantly lower environmental impact, providing a sustainable solution for renewable energy production. This research contributes to advancing both the utilization of biomass waste and the development of eco-friendly PV cell technologies, with implications for a more sustainable and greener energy future. This study underscores the pivotal role of exploring anaerobic digestate-derived polymers in advancing the sustainability and performance of solar photovoltaic cells, addressing critical environmental and energy challenges of our time.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 7 Given name: [Ashok] Last name [Kumar Yadav]. Also, kindly confirm the details in the metadata are correct.correct

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3