Abstract
AbstractThe development of engineered metamaterials has enabled the fabrication of tunable photonic devices capable of manipulating the characteristics of electromagnetic surface waves. Integration of semiconductors in metamaterials is a proven approach for creating thermally tunable metamaterials through temperature control of the semiconductor carrier density. In this paper, an interface consisting of an isotropic dielectric material as a cover and an indium antimonide (InSb) nanowire metamaterial as a substrate, is theoretically introduced to investigate the propagation conditions of Dyakonov surface waves in terahertz (THz) frequencies. Various temperature-dependent properties of Dyakonov surface waves in such a geometry is studied, including allowed THz regions, angular existence domain, dispersion relation, directionality, localization degree and figure of merit. The proposed configuration due to the presence of significant birefringence in InSb nanowire metamaterial, has potential applications in THz sensing, imaging and spectroscopy.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献