Effects of MRI scanner manufacturers in classification tasks with deep learning models

Author:

Kushol Rafsanjany,Parnianpour Pedram,Wilman Alan H.,Kalra Sanjay,Yang Yee-Hong

Abstract

AbstractDeep learning has become a leading subset of machine learning and has been successfully employed in diverse areas, ranging from natural language processing to medical image analysis. In medical imaging, researchers have progressively turned towards multi-center neuroimaging studies to address complex questions in neuroscience, leveraging larger sample sizes and aiming to enhance the accuracy of deep learning models. However, variations in image pixel/voxel characteristics can arise between centers due to factors including differences in magnetic resonance imaging scanners. Such variations create challenges, particularly inconsistent performance in machine learning-based approaches, often referred to as domain shift, where the trained models fail to achieve satisfactory or improved results when confronted with dissimilar test data. This study analyzes the performance of multiple disease classification tasks using multi-center MRI data obtained from three widely used scanner manufacturers (GE, Philips, and Siemens) across several deep learning-based networks. Furthermore, we investigate the efficacy of mitigating scanner vendor effects using ComBat-based harmonization techniques when applied to multi-center datasets of 3D structural MR images. Our experimental results reveal a substantial decline in classification performance when models trained on one type of scanner manufacturer are tested with data from different manufacturers. Moreover, despite applying ComBat-based harmonization, the harmonized images do not demonstrate any noticeable performance enhancement for disease classification tasks.

Funder

ALS Society of Canada

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Fondation Brain Canada

Gouvernement du Canada | Canadian Institutes of Health Research

Prime Minister Fellowship Bangladesh

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3