Analysis of dynamic networks based on the Ising model for the case of study of co-authorship of scientific articles

Author:

Hurtado-Marín V. Andrea,Agudelo-Giraldo J. Dario,Robledo Sebastian,Restrepo-Parra Elisabeth

Abstract

AbstractTwo computational methods based on the Ising model were implemented for studying temporal dynamic in co-authorship networks: an interpretative for real networks and another for simulation via Monte Carlo. The objective of simulation networks is to evaluate if the Ising model describes in similar way the dynamic of the network and of the magnetic system, so that it can be found a generalized explanation to the behaviours observed in real networks. The scientific papers used for building the real networks were acquired from WoS core collection. The variables for each record took into account bibliographic references. The search equation for each network considered specific topics trying to obtain an advanced temporal evolution in terms of the addition of new nodes; that means 3 steps, a time to reach the interest of the scientific community, a gradual increase until reaching a peak and finally, a decreasing trend by losing of novelty. It is possible to conclude that both methods are consistent with each other, showing that the Ising model can predict behaviours such as the number and size of communities (or domains) according to the temporal distribution of new nodes.

Funder

Dirección de Laboratorios

dirección de investigaciones

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3