Platform- and label-free detection of lead ions in environmental and laboratory samples using G-quadraplex probes by circular dichroism spectroscopy

Author:

Kim Raeyeong,Youn Young-Sang,Kang Misook,Kim Eunjoo

Abstract

AbstractGuanine-rich quadruplex (G-QD) are formed by conversion of nucleotides with specific sequences by stabilization of positively charged K+ or Na+. These G-QD structures differentially absorb two-directional (right- and left-handed) circularly polarized light, which can discriminate the parallel or anti-parallel structures of G-QDs. In this study, G-QDs stabilized by Pb2+ were analyzed by a circular dichroism (CD) spectroscopy to determine Pb2+ concentration in water samples. Thrombin aptamer (TBA), PS2.M, human telomeric DNA (HTG), AGRO 100, and telomeric related sequence (T2) were studied to verify their applicability as probes for platform- and label-free detection of Pb2+ in environmental as well as laboratory samples. Among these nucleotides, TBA and PS2.M exhibited higher binding constants for Pb2+, 1.20–2.04 × 106/M at and 4.58 × 104–1.09 × 105/M at 100 micromolar and 100 mM K+ concentration, respectively. They also exhibited excellent selectivity for Pb2+ than for Al3+, Cu2+, Ni2+, Fe3+, Co2+, and Cr2+. When Pb2+ was spiked into an effluent sample from a wastewater treatment plant (WWTP), its existence was detected by CD spectroscopy following a simple addition of TBA or PS2.M. By the addition of TBA and PS2.M, the Pb2+ signals were observed in effluent samples over 0.5 micromolar (100 ppb) concentration. Furthermore, PS2.M caused a Pb2+-specific absorption band in the effluent sample without spiking of Pb2+, and could be induced to G-QD structure by the background Pb2+ concentration in the effluent, 0.159 micromolar concentration (3.30 ppb). Taken together, we propose that TBA and PS2.M are applicable as platform- and label-free detection probes for monitoring Pb2+ in environmental samples such as discharged effluent from local WWTPs, using CD spectroscopy.

Funder

National Research Foundation of Korea

Daegu Gyeongbuk Institute of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3