Research on multi-effect evaporation salt prediction based on feature extraction

Author:

Chen Bo-Lun,Hua Yong,Zhu Guo-Chang,Ji Min,Zhu Hong-Fei,Yu Yong-Tao

Abstract

AbstractIn the multi-effect evaporation salt making process, the smooth operation of the salt making process is crucial. As the salt production process continues, many unstable factors will cause the salt production process not to proceed smoothly. These factors can be discovered in advance by predicting the salt production data, thus, it is of great significance to predict the multi-effect evaporation salt production data. In the process of multi-effect evaporation and salt production, the multiple salt-making devices make the influence between the parameters closer, and the influence of a single parameter on itself is sometimes ductile. Therefore, the data of multi-effect evaporation and salt production have the characteristics of high dimensions, high complexity and temporal information. If the historical salt production data is used for data prediction directly, the prediction model will take a long time and the prediction effect is not good. Thus, how to predict the multi-effect evaporation salt production data is the main research problem of this paper. In view of the above problems, according to the characteristics of multi-effect evaporation salt production data, this paper analyzes and improves the self encoder for feature extraction of multi effect-evaporation salt production data, so as to solve the problem of high dimensions and high complexity of salt production data. On this basis, combined with the time-series information contained in the salt production data, a multi-effect evaporation salt production data prediction model is proposed based on long-term and short-term memory cycle neural network to solve the prediction problem of time-series salt production data. Experiments show that the prediction model can predict and prevent the problems in salt production line in advance. It has a certain theoretical research value and application value in the intelligent production process and production line optimization of salt chemical industry.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3