Raman Spectroscopy vs Quantitative Polymerase Chain Reaction In Early Stage Huanglongbing Diagnostics

Author:

Sanchez Lee,Pant Shankar,Mandadi Kranthi,Kurouski Dmitry

Abstract

AbstractRaman spectroscopy (RS) is an emerging analytical technique that can be used to develop and deploy precision agriculture. RS allows for confirmatory diagnostic of biotic and abiotic stresses on plants. Specifically, RS can be used for Huanglongbing (HLB) diagnostics on both orange and grapefruit trees, as well as detection and identification of various fungal and viral diseases. The questions that remain to be answered is how early can RS detect and identify the disease and whether RS is more sensitive than qPCR, the “golden standard” in pathogen diagnostics? Using RS and HLB as case study, we monitored healthy (qPCR-negative) in-field grown citrus trees and compared their spectra to the spectra collected from healthy orange and grapefruit trees grown in a greenhouse with restricted insect access and confirmed as HLB free by qPCR. Our result indicated that RS was capable of early prediction of HLB and that nearly all in-field qPCR-negative plants were infected by the disease. Using advanced multivariate statistical analysis, we also showed that qPCR-negative plants exhibited HLB-specific spectral characteristics that can be distinguished from unrelated nutrition deficit characteristics. These results demonstrate that RS is capable of much more sensitive diagnostics of HLB compared to qPCR.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3