KN3014, a piperidine-containing small compound, inhibits auto-secretion of IL-1β from PBMCs in a patient with Muckle–Wells syndrome

Author:

Kaneko Naoe,Kurata Mie,Yamamoto Toshihiro,Shigemura Tomonari,Agematsu Kazunaga,Yamazaki Takashi,Takeda Hiroyuki,Sawasaki Tatsuya,Koga Tomohiro,Kawakami Atsushi,Yachie Akihiro,Migita Kiyoshi,Yoshiura Koh-ichiro,Urano Takeshi,Masumoto Junya

Abstract

AbstractNLRP3, an intracellular pattern recognition receptor, recognizes numerous pathogens and/or its own damage-associated molecules, and forms complexes with the adaptor protein ASC. These complexes constitute the NLRP3 inflammasome, a platform for processing interleukin (IL)-1β and/or IL-18. Several NLRP3 mutations result in constitutive activation of the NLRP3 inflammasome, causing cryopyrin-associated periodic syndrome (CAPS). To the best of our knowledge, small compounds that specifically inhibit inflammasome activation through the pyrin domain (PYD) have not yet been developed. This study describes an attempt to develop small compounds targeting the NLRP3 inflammasome. A core chemical library of 9,600 chemicals was screened against reconstituted NLRP3 inflammasome in a cell-free system with an amplified luminescence proximity homogeneous assay and a cell-based assay by human peripheral blood mononuclear cells (PBMCs). Inflammasome activation was evaluated by ASC-speck formation in human PBMCs, accompanied by IL-1β secretion and processing, and by using IL-1β-based dual operating luciferase (IDOL) mice. The activity of these compounds was evaluated clinically using PBMCs from a patient with Muckle–Wells syndrome (MWS), a type of CAPS, with an R260W mutation in NLRP3. Screening identified KN3014, a piperidine-containing compound targeting the interaction between NLRP3 and ASC through the PYD. KN3014 reduced ASC-speck formation in human PBMCs, luminescence from IDOL mice, and auto-secretion of IL-1β by PBMCs from the patient with MWS. These findings suggest that KN3014 may be an attractive candidate for treatment of MWS, as well as other NLRP3 inflammasomopathies.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3