Human SARS-CoV-2 has evolved to reduce CG dinucleotide in its open reading frames

Author:

Wang Yong,Mao Jun-Ming,Wang Guang-Dong,Luo Zhi-Peng,Yang Liu,Yao Qin,Chen Ke-Ping

Abstract

AbstractThe outbreak of COVID-19 has brought great threat to human health. Its causative agent is a severe acute respiratory syndrome-related coronavirus which has been officially named SARS-CoV-2. Here we report the discovery of extremely low CG abundance in its open reading frames. We found that CG reduction in SARS-CoV-2 is achieved mainly through mutating C/G into A/T, and CG is the best target for mutation. Meanwhile, 5′-untranslated region of SARS-CoV-2 has high CG content and is capable of forming an internal ribosome entry site (IRES) to recruit host ribosome for translating its RNA. These features allow SARS-CoV-2 to reproduce efficiently in host cells, because less energy is consumed in disrupting the stem-loops formed by its genomic RNA. Notably, genomes of cellular organisms also have very low CG abundance, suggesting that mutating C/G into A/T occurs universally in all life forms. Moreover, CG is the dinucleotide related to CpG island, mutational hotspot and single nucleotide polymorphism in cellular organisms. The relationship between these features is worthy of further investigations.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3