Abstract
AbstractAdvances in digital whole-slide imaging and machine learning (ML) provide new opportunities for automated examination and quantification of histopathological slides to support pathologists and biologists. However, implementation of ML tools often requires advanced skills in computer science that may not be immediately available in the traditional wet-lab environment. Here, we propose a simple and accessible workflow to automate detection and quantification of brain epithelial metastases on digitized histological slides. We leverage 100 Hematoxylin & Eosin (H&E)-stained whole slide images (WSIs) from 25 Balb/c mice with various level of brain metastatic tumor burden. A supervised training of the Trainable Weka Segmentation (TWS) from Fiji was achieved from annotated WSIs. Upon comparison with manually drawn regions, it is apparent that the algorithm learned to identify and segment cancer cell-specific nuclei and normal brain tissue. Our approach resulted in a robust and highly concordant correlation between automated metastases quantification of brain metastases and manual human assessment (R2 = 0.8783; P < 0.0001). This simple approach is amenable to other similar analyses, including that of human tissues. Widespread adoption of these tools aims to democratize ML and improve precision in traditionally qualitative tasks in histopathology-based research.
Funder
Gouvernement du Canada | Canadian Institutes of Health Research
Publisher
Springer Science and Business Media LLC
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献