The shape function method of nonlinear thermal stress of granite fracture tips in a high-temperature environment

Author:

Wang Yang,Chen Wen-hua

Abstract

AbstractExposed rock masses in tunnel portals are susceptible to thermal deterioration in southern China, where temperatures are relatively high. The thermal stress field of rock masses is affected by fracture shape and distribution as fractures near the surface are channels for solar radiation energy to be converted into rock thermal energy. In this study, a function expression is developed for triangular heat sources of fractured rock masses in a tunnel portal in a high-temperature environment. By the function expression, the temperature field and thermal stress field are calculated, and the influence of fracture shape parameters and multi-fracture interaction is analyzed. The results are as follows: (1) the temperature field and thermal stress field of exposed rocks are redistributed by fractures. The internal temperature of the fractured rocks is higher than that of non-fractured rocks, and thermal stress near the fracture tip increases. (2) For triangular fractures of the same length, thermal stress increases as the apex angle increases. (3) When the spacing between parallel fractures or coplanar fractures is close, the superposition effect of thermal stress becomes significant. (4) In a high-temperature environment, temperature field and thermal stress field of a fractured rock are both nonlinear as temperature and thermal stress around fractures increase significantly. The results provide effective reference for stability evaluation of fractured rock masses in tunnel portals and offer theoretical foundation for thermal diseases analysis and protection measures of tunnel engineering in high-temperature environments of southern China.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3