Author:
Zhu Jin,Liu Wenxu,Zhang Xiangrong,Lyu Feifei,Guo Zhengqiang
Abstract
AbstractThis paper studies an optimization problem of antenna placement for multiple heading angles of the target in a distributed multiple-input multiple-output (MIMO) radar system. An improved method to calculate the system’s coverage area in light of the changing target heading is presented. The antenna placement optimization problem is mathematically modelled as a sequential decision problem for compatibility with reinforcement learning solutions. A reinforcement learning agent is established, which uses the long short-term memory (LSTM)-based proximal policy optimization (PPO) method as the core algorithm to solve the antenna placement problem. Finally, the experimental findings demonstrate that the method can enhance the coverage area of antenna placement and thus has reference value for providing new ideas for the antenna placement optimization of distributed MIMO radar.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献