Deep learning-driven hybrid model for short-term load forecasting and smart grid information management

Author:

Wen Xinyu,Liao Jiacheng,Niu Qingyi,Shen Nachuan,Bao Yingxu

Abstract

AbstractAccurate power load forecasting is crucial for the sustainable operation of smart grids. However, the complexity and uncertainty of load, along with the large-scale and high-dimensional energy information, present challenges in handling intricate dynamic features and long-term dependencies. This paper proposes a computational approach to address these challenges in short-term power load forecasting and energy information management, with the goal of accurately predicting future load demand. The study introduces a hybrid method that combines multiple deep learning models, the Gated Recurrent Unit (GRU) is employed to capture long-term dependencies in time series data, while the Temporal Convolutional Network (TCN) efficiently learns patterns and features in load data. Additionally, the attention mechanism is incorporated to automatically focus on the input components most relevant to the load prediction task, further enhancing model performance. According to the experimental evaluation conducted on four public datasets, including GEFCom2014, the proposed algorithm outperforms the baseline models on various metrics such as prediction accuracy, efficiency, and stability. Notably, on the GEFCom2014 dataset, FLOP is reduced by over 48.8%, inference time is shortened by more than 46.7%, and MAPE is improved by 39%. The proposed method significantly enhances the reliability, stability, and cost-effectiveness of smart grids, which facilitates risk assessment optimization and operational planning under the context of information management for smart grid systems.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3