Author:
Harke Saba,Habibpourmoghadam Atefeh,Evlyukhin Andrey B.,Calà Lesina Antonio,Chichkov Boris N.
Abstract
AbstractGold nanoparticles (AuNPs) exposed to low frequency magnetic fields have shown promise in enhancing biological processes, such as cellular reprogramming. Despite the experimental evidence, a comprehensive understanding of the underlying physical principles and the corresponding theory remains elusive. The most common hypothesis is that functionalized nanoparticles transiently amplify magnetic fields, leading to improved cellular reprogramming efficiency. However, a detailed investigation on this topic is lacking. This paper bridges this knowledge gap by conducting a comprehensive investigation on the magnetic response of surface-modified AuNPs exposed to magnetic fields with frequencies up to hundreds of MHz. Starting with the inherent properties of bulk gold material, we explore a wide range of magnetic susceptibilities that might result from the redistribution of charge carriers due to bond molecules on the particle surfaces. Through analytical models and numerical electromagnetic simulations, we examine various geometric factors that can enhance the magnetic response, including the number of particles, spatial distribution, size, and shape. Our broad investigation provides researchers with analytical and numerical estimates of the magnetic response of nanoparticles, and the associated limits that can be expected. We found that a magnetic field enhancement comparable to the incident field requires very high magnetic susceptibilities, well beyond the values measured in functionalized gold nanoparticles thus far.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献