Volumetric metamaterials versus impedance surfaces in scattering applications

Author:

Kosulnikov S.,Filonov D.,Boag A.,Ginzburg P.

Abstract

AbstractArtificially created media allow employing material parameters as additional valuable degrees of freedom in tailoring electromagnetic scattering. In particular, metamaterials with either negative permeability or permittivity allow creating deeply subwavelength resonant structures with relatively high scattering cross-sections. However, the equivalence principle allows replacing volumetric structures with properly designed curved impedance surfaces, ensuring the same electromagnetic properties. Here, we examine this statement from a practical standpoint, considering two structures, having a dipolar electric resonance at the same frequency. The first realization is based on arrays of inductively loaded electric dipoles printed on stacked circuit boards (a volumetric metamaterial), while the second structure utilizes a 4-wire spiral on a spherical surface (surface impedance realization). An intermediate conclusion is that the surface implementation tends to outperform the volumetric counterparts in the scenario when a single resonance is involved. However, in the case where multiple resonances are overlapping and lossy materials are involved, volumetric realization can have an advantage. The discussed structures are of significant importance to the field of electrically small antennas, superdirective antennas, and superscatterers, which find use in wireless communications and radar applications, to name just a few.

Funder

PAZY Foundation

European Research Council

Ministry of Science and Technology, Israel

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3