Differential thermal analysis techniques as a tool for preliminary examination of catalyst for combustion

Author:

Yurchenko Olena,Pernau Hans-Fridtjof,Engel Laura,Wöllenstein Jürgen

Abstract

AbstractThe need for more economical catalysts for various combustion reactions is continuously driving catalyst development. We present Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) as suitable techniques for fast examination of catalyst activity for combustion reactions. The heat of reaction ΔHr generated at the catalyst in a combustible atmosphere is the measure for estimating the capability of the catalyst. Present investigations verify the reliability of both methods for the pre-selection of catalysts for further extensive investigations. To simplify the measurements and the result evaluation, a new measurement routine is introduced which is more suitable for rapid catalyst investigation than the conventional approach. For initial investigations, oxidation of 1% methane on a cobalt oxide catalyst was used. First, DTA measurements were performed. The vessel size and the amount of catalyst are considered as factors influencing the thermal signal. Simultaneous mass spectrometry measurements were used to better understand the formation of the DTA response. Comparable DSC investigations were then conducted. Finally, the behavior of catalyst was compared with two commercial palladium/alumina catalysts using DTA and DSC. Our investigations show that DTA and DSC are powerful methods to identify potential catalysts in a fast and reproducible manner, provided that all parameters influencing the thermal signal are kept constant.

Funder

Fraunhofer-Gesellschaft

Bundesministerium für Bildung und Forschung

Fraunhofer-Institut für Physikalische Messtechnik IPM

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3