A study of nitrogen dioxide (NO2) periodicity over the United Arab Emirates using wavelet analysis

Author:

Al Yammahi Aishah,Aung Zeyar

Abstract

AbstractNO2 and nitric oxide (NO) are the most reactive gases in the atmosphere. The interaction of NOx molecules with oxygen, water and other chemicals leads to the formation of acid rain. The presence of NO2 in the air affects human health and forms a photochemical smog. In this study, we utilize wavelet analysis, namely, the Morlet wavelet, which is a type of continuous wavelet transform, to conduct a spectral analysis of the periodicity of nitrogen dioxide (NO2). The study is conducted using data from 14 weather stations located in diverse geographic areas of the United Arab Emirates (UAE) over a period of two years (2019 and 2020). We explain and relate the significance of human activities to the concentration level of NO2, particularly considering the effect of the COVID-19 lockdown to the periodicity of NO2. The results show that NO2 concentrations in desert areas such as Liwa and Al Quaa were unaffected by the lockdown period (April–July 2020) resulting from the COVID-19 pandemic. The other stations in the urban areas of Abu Dhabi city, Al Dhafra and Al Ain, showed a reduction in NO2 during the lockdown. NO2 is more highly concentrated during winter seasons than during other seasons. The periodicity of NO2 lasted from a few days up to 16 days in most regions. However, some stations located in the Al Dhafra region, such as Al Ruwais and the Gayathi School stations, exhibited a longer period of more than 32 days with a 0.05 significance test. In the Abu Dhabi region, NO2 lasted between 64 and 128 days at the Al Mafraq station. The correlation between the NO2 concentration across several ground stations was studied using wavelet coherence.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3