Classification of deep-sea cold seep bacteria by transformer combined with Raman spectroscopy

Author:

Liu Bo,Liu Kunxiang,Qi Xiaoqing,Zhang Weijia,Li Bei

Abstract

AbstractRaman spectroscopy is a rapid analysis method of biological samples without labeling and destruction. At present, the commonly used Raman spectrum classification models include CNN, RNN, etc. The transformer has not been used for Raman spectrum identification. This paper introduces a new method of transformer combined with Raman spectroscopy to identify deep-sea cold seep microorganisms at the single-cell level. We collected the Raman spectra of eight cold seep bacteria, each of which has at least 500 spectra for the training of transformer model. We compare the transformer classification model with other deep learning classification models. The experimental results show that this method can improve the accuracy of microbial classification. Our average isolation level accuracy is more than 97%.

Funder

Strategic Priority Research Program of the Chi-nese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3