Monovalent ions and stress-induced senescence in human mesenchymal endometrial stem/stromal cells

Author:

Shatrova Alla,Burova Elena,Pugovkina Natalja,Domnina Alisa,Nikolsky Nikolaj,Marakhova Irina

Abstract

AbstractMonovalent ions are involved in growth, proliferation, differentiation of cells as well as in their death. This work concerns the ion homeostasis during senescence induction in human mesenchymal endometrium stem/stromal cells (hMESCs): hMESCs subjected to oxidative stress (sublethal pulse of H2O2) enter the premature senescence accompanied by persistent DNA damage, irreversible cell cycle arrest, increased expression of the cell cycle inhibitors (p53, p21) cell hypertrophy, enhanced β-galactosidase activity. Using flame photometry to estimate K+, Na+content and Rb+(K+) fluxes we found that during the senescence development in stress-induced hMESCs, Na+/K+pump-mediated K+fluxes are enhanced due to the increased Na+content in senescent cells, while ouabain-resistant K+fluxes remain unchanged. Senescence progression is accompanied by a peculiar decrease in the K+content in cells from 800–900 to 500–600 µmol/g. Since cardiac glycosides are offered as selective agents for eliminating senescent cells, we investigated the effect of ouabain on ion homeostasis and viability of hMESCs and found that in both proliferating and senescent hMESCs, ouabain (1 nM–1 µM) inhibited pump-mediated K+transport (ID505 × 10–8 M), decreased cell K+/Na+ratio to 0.1–0.2, however did not induce apoptosis. Comparison of the effect of ouabain on hMESCs with the literature data on the selective cytotoxic effect of cardiac glycosides on senescent or cancer cells suggests the ion pump blockade and intracellular K+depletion should be synergized with target apoptotic signal to induce the cell death.

Funder

The state assignment of the Ministry of Science and Higher Education of the Russian Federation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3