Quantifying the uncertainty of LLM hallucination spreading in complex adaptive social networks

Author:

Hao Guozhi,Wu JunORCID,Pan Qianqian,Morello RosarioORCID

Abstract

AbstractLarge language models (LLMs) are becoming a significant source of content generation in social networks, which is a typical complex adaptive system (CAS). However, due to their hallucinatory nature, LLMs produce false information that can spread through social networks, which will impact the stability of the whole society. The uncertainty of LLMs false information spread within social networks is attributable to the diversity of individual behaviors, intricate interconnectivity, and dynamic network structures. Quantifying the uncertainty of false information spread by LLMs in social networks is beneficial for preemptively devising strategies to defend against threats. To address these challenges, we propose an LLMs hallucination-aware dynamic modeling method via agent-based probability distributions, spread popularity and community affiliation, to quantify the uncertain spreading of LLMs hallucination in social networks. We set up the node attributes and behaviors in the model based on real-world data. For evaluation, we consider the spreaders, informed people, discerning and unwilling non-spreaders as indicators, and quantified the spreading under different LLMs task situations, such as QA, dialogue, and summarization, as well as LLMs versions. Furthermore, we conduct experiments using real-world LLM hallucination data combined with social network features to ensure the validity of the proposed quantifying scheme.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Ouyang, L. et al. Training language models to follow instructions with human feedback (2022). arXiv:2203.02155.

2. Touvron, H. et al. Llama: Open and efficient foundation language models (2023). arXiv:2302.13971.

3. Pichai, S. An important next step on our ai journey. Google (2023).

4. Naveed, H. et al. A comprehensive overview of large language models. arXiv preprint arXiv:2307.06435 (2023).

5. Liu, F. et al. A medical multimodal large language model for future pandemics. NPJ Digit. Med. 6, 226 (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3