Abstract
AbstractThis study investigated the addition of various oxides to further improve the catalytic characteristics of Tl2O3, which offers a high carbon combustion catalytic capacity to lower the carbon combustion temperature of 660 °C by ~ 300 °C. Mixtures of carbon (2 wt%) with composite catalysts comprising 20 wt% Tl2O3–80wt% added oxide were analyzed using DSC. Bi2O3 offered the best improvement, where the exothermic peak temperatures for carbon combustion of carbon with various Tl2O3–x wt% Bi2O3 composites were lower than that of carbon with pure Tl2O3. Isothermal TG measurements were performed using a mixture of carbon and the Tl2O3‒95 wt% Bi2O3 composite catalyst, where a 2 wt% weight loss (i.e. removal of all carbon) was achieved above 230 °C. A porous alumina filter was coated with the composite catalyst and carbon was deposited on the filter surface. The filter was held at constant temperatures under air flow, which confirmed that carbon was completely removed at 230 °C. This study demonstrated the potential for using these composite catalysts in self-cleaning particulate filters to decompose and eliminate fine particulate matter and diesel particulate matter generated from steelworks, thermal power plants, and diesel vehicles simply using the heat of the exhaust gas in a factory flue-gas stack or vehicle muffler.
Funder
The Comprehensive Support Programs for Creation of Regional Innovation Science and Technology Incubation Program in Advanced Regions from Japan Science and Technology Agency
The Grant of Steel Foundation for Environmental Protection Technology
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献