Author:
Eleti Rajeshwar R.,Klimova Margarita,Tikhonovsky Mikhail,Stepanov Nikita,Zherebtsov Sergey
Abstract
AbstractTi-rich body-centered cubic (BCC, β) high-entropy alloys having compositions Ti35Zr27.5Hf27.5Nb5Ta5, Ti38Zr25Hf25Ta10Sn2, and Ti38Zr25Hf25Ta7Sn5 (in at%) were designed using bond order (Bo)-mean d-orbital energy level (Md) approach. Deformation mechanisms of these alloys were studied using tensile deformation. The alloys showed exceptionally high strain-hardening and ductility. For instance, the alloys showed at least twofold increment of tensile strength compared to the yield strength, due to strain-hardening. Post-deformation microstructural observations confirmed the transformation of β to hexagonal close packed (HCP, α′) martensite. Based on microstructural investigation, stress–strain behaviors were explained using transformation induced plasticity effect. Crystallographic analysis indicated transformation of β to α′ showed strong variant selection (1 1 0)β//(0 0 0 1)α′, and [1 − 1 1]β//[1 1 − 2 0]α′.
Funder
Russian Science Foundation
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Zhao, G.-H., Xu, X., Dye, D. & Rivera-Díaz-del-Castillo, P. E. J. Microstructural evolution and strain-hardening in TWIP Ti alloys. Acta Mater.183, 155–164 (2020).
2. Banerjee, S. & Mukhopadhyay, P. Phase Transformations, Examples from Titanium and Zirconium Alloys (Elsevier, Amsterdam, 2007).
3. Haasen, P., Haasen, P. & Mordike, B. L. Physical Metallurgy (Cambridge University Press, Cambridge, 1996).
4. De Cooman, B. C., Estrin, Y. & Kim, S. K. Twinning-induced plasticity (TWIP) steels. Acta Mater.142, 283–362 (2018).
5. You, L. & Song, X. A study of low Young’s modulus Ti–Nb–Zr alloys using d electrons alloy theory. Scr. Mater.67, 57–60 (2012).
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献