Author:
Mou Tiantian,Tian Jing,Tian Yi,Yun Mingkai,Li Junqi,Dong Wei,Lu Xia,Zhu Ziwei,Mi Hongzhi,Zhang Xiaoli,Li Xiang
Abstract
Abstract
A translocator protein 18 kDa targeted radiotracer, N,N-diethyl-2-(2-(4-[18F]fluorophenyl)-5,7-dimethylpyrazolo[1,5-a] pyrimidin-3-yl) acetamide ([18F]FDPA), was automated synthetized and evaluated for cardiac inflammation imaging. Various reaction conditions for an automated synthesis were systematically optimized. MicroPET/CT imaging were performed on normal rats and rats with myocardial infarction (MI). Normalized SUV ratios of [18F]FDPA to [13N]NH3 (NSRs) in different regions were calculated to normalize the uptake of [18F]FDPA to perfusion. The amount of TBAOMs and the volume/proportion of water were crucial for synthesis. After optimization, the total synthesis time was 68 min. The non-decay corrected radiochemical yields (RCYs) and molar activities were 19.9 ± 1.7% and 169.7 ± 46.5 GBq/μmol, respectively. In normal rats, [18F]FDPA showed a high and stable cardiac uptake and fast clearance from other organs. In MI rats, NSRs in the peri-infarct and infarct regions, which were infiltrated with massive inflammatory cells revealed by pathology, were higher than that in the remote region (1.20 ± 0.01 and 1.08 ± 0.10 vs. 0.89 ± 0.05, respectively). [18F]FDPA was automated synthesized with high RCYs and molar activities. It showed a high uptake in inflammation regions and offered a wide time window for cardiac imaging, indicating it could be a potential cardiac inflammation imaging agent.
Funder
Beijing Hospitals Authority Youth Programme
National Natural Science Foundation of China
Capital Characteristic Clinical Application Research
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献