Study on soil erosion and its driving factors from the perspective of landscape in Xiushui watershed, China

Author:

Wen Linsheng,Peng Yun,Zhou Yunrui,Cai Guo,Lin Yuying,Li Baoyin

Abstract

AbstractSoil erosion (SE) is one of the most serious disasters in the world, which directly damage the productivity of the land and affect human well-being. How to effectively mitigate soil erosion is a challenge faced by all countries in the world. In this study, soil erosion was quantitatively assessed base on the RULSE model in an ecologically fragile area [Xiushui watershed (XSW)], and the effects of three major categories of factors (land use/cover change, landscape fragmentation and climate) on soil erosion were investigated using correlation analysis and structural equation model. The results indicated that there was no continuous increase or decrease trend on the SE of XSW with impact of rainfall, the mean values of SE were 2205.27 t/ha, 3414.25 t/ha and 3319.44 t/ha from 2000 to 2020 and the hot areas of SE were mainly distributed around the Xiushui river channel, respectively. The expansion of urbanization (the area of impervious increased from 113.12 to 252.57 km2) aggravated landscape fragmentation, and the landscape fragmented area had some overlap with the hot zone of SE. Additionally, the LUCC factor dominated by NDVI, landscape fragmentation factor and climate factor dominated by rainfall had a directly driving effect on SE, where the path coefficient of landscape fragmentation was 0.61 (P < 0.01), respectively. We also found that except increasing forest area, improving forest quality (NDVI, canopy closure, structure) deserved emphasized in SE management, and the effect of landscape fragmentation on SE also should not be ignored. Moreover, soil erosion assessment at large scales over long time periods tends to underestimate the driving force of rainfall on SE, and it is a great challenge to evaluate the effect of extreme rainfall on soil erosion at short time scales in a downscale manner. This research provides insights for ecological sustainable management and soil erosion protection policies.

Funder

National Natural Science Foundation of China

The Science and Technology Project of Fujian Provincial of Water Resources Department

Science and the Technology Project of Fujian Forestry Bureau

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3