High heat flux reduction to materials using current filaments

Author:

Le Trang,Suzuki Yasuhiro,Hasegawa Hiroki,Moritaka Toseo,Ohtani Hiroaki

Abstract

AbstractReducing high electron and ion heat fluxes is one of the critical issues for shielding satellites and spacecraft. One of the ideas for shielding high particle and heat fluxes is to apply an external magnetic field generated by injecting current filaments. In this work, we model a flow of plasma, which includes electrons and ions in a small region, by using two spatial dimensions and three coordinates for velocities (2D3V) Particle-In-Cell (PIC) code to study the effects of the injected current filaments on particle and heat fluxes to the wall. The plasma enters the simulation domain from the source region at the left boundary and is fully absorbed in the conductor wall at the right boundary. Current filaments are injected to change the magnetic field structure of the system. We compare particle density, particle flux, and heat flux with and without injecting the current filaments into the domain in two dimensions. Based on the simulation results, we found that injecting current filaments can reduce the peak fluxes to the wall and transfer some of those fluxes along the wall. Therefore, injecting the current filaments is a good candidate for shielding satellites and spacecraft from high-energy ion and electron fluxes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3