An intelligent model for supporting edge migration for virtual function chains in next generation internet of things

Author:

Tsakanikas Vassilis,Dagiuklas Tasos,Iqbal Muddesar,Wang Xinheng,Mumtaz Shahid

Abstract

AbstractThe developments on next generation IoT sensing devices, with the advances on their low power computational capabilities and high speed networking has led to the introduction of the edge computing paradigm. Within an edge cloud environment, services may generate and consume data locally, without involving cloud computing infrastructures. Aiming to tackle the low computational resources of the IoT nodes, Virtual-Function-Chain has been proposed as an intelligent distribution model for exploiting the maximum of the computational power at the edge, thus enabling the support of demanding services. An intelligent migration model with the capacity to support Virtual-Function-Chains is introduced in this work. According to this model, migration at the edge can support individual features of a Virtual-Function-Chain. First, auto-healing can be implemented with cold migrations, if a Virtual Function fails unexpectedly. Second, a Quality of Service monitoring model can trigger live migrations, aiming to avoid edge devices overload. The evaluation studies of the proposed model revealed that it has the capacity to increase the robustness of an edge-based service on low-powered IoT devices. Finally, comparison with similar frameworks, like Kubernetes, showed that the migration model can effectively react on edge network fluctuations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3