Effective Removal of Levofloxacin from Pharmaceutical Wastewater Using Synthesized Zinc Oxid, Graphen Oxid Nanoparticles Compared with their Combination

Author:

El-Maraghy Christine M.,El-Borady Ola M.,El-Naem Omnia A.

Abstract

AbstractThe presence of antibiotic traces in the aquatic system due to the inefficient treatment of the pharmaceutical wastewater represented threats, such as bioaccumulation and antibiotic-resistance, to the environment and human health. Accordingly, for the first time, the current work utilized the photocatalytic degradation and the adsorption approach for Levofloxacin (LEVO) in pharmaceutical wastewater using new designed nano aspects. Therefore, spherical Zinc oxide nanoparticles (ZnONP) sized 17 nm and ultrathin sheet-like structure graphene oxide nanosheets (GONS) with layer thickness ~5 nm were fabricated separately or in a combination between them then characterized via Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Fourier Transforms Infrared Spectroscopy (FTIR), absorption spectra (UV-Vis) and Brunauer-Emmett-Teller (BET). Additionally, several parameters were investigated to evaluate the potential of the removal process, such as pH, the exposure time to UV radiation, the type and concentration of the nanoparticles (NPs) and the initial concentration of the drug using a mixed fractional factorial design. The most effective parameter for LEVO removal was the NPs type followed by the initial drug concentration. Furthermore, an RP-HPLC/UV method was developed and validated for measuring the percentage of removal for LEVO drug. The highest percentage removal for both 50 and 400 µg mL−1 LEVO was 99.2% and 99.6%, respectively, which was achieved using ZnONP/GONS combination at pH 9 ± 0.05 and UV light exposure time 120 min. In addition, the negative antibacterial activity of the treated wastewater sample confirmed the drug removal. The established protocol was successfully applied on wastewater samples collected from a pharmaceutical company that encouraged researchers to mainstream this design to be applied on other pharmaceutical wastewater drugs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3