Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events

Author:

Le Elizabeth P. V.,Rundo Leonardo,Tarkin Jason M.,Evans Nicholas R.,Chowdhury Mohammed M.,Coughlin Patrick A.,Pavey Holly,Wall Chris,Zaccagna Fulvio,Gallagher Ferdia A.,Huang Yuan,Sriranjan Rouchelle,Le Anthony,Weir-McCall Jonathan R.,Roberts Michael,Gilbert Fiona J.,Warburton Elizabeth A.,Schönlieb Carola-Bibiane,Sala Evis,Rudd James H. F.

Abstract

AbstractRadiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk.

Funder

School of Clinical Medicine, University of Cambridge

Frank Edward Elmore Fund

Medical Research Council

The Mark Foundation for Cancer Research and Cancer Research UK (CRUK) Cambridge Centre

Wellcome Trust

National Institute for Health Research (NIHR) Imperial Biomedical Research Centre

British Heart Foundation Cambridge Centre of Research Excellence

The Dunhill Medical Trust

Royal College of Surgeons of England

British Heart Foundation

Cancer Research UK

AstraZeneca Oncology R

National Institute for Health Research

Leverhulme Trust

EPSRC

Wellcome Innovator Award

Horizon 2020

Cantab Capital Institute for the Mathematics of Information

Alan Turing Institute

NIHR Cambridge Biomedical Research Centre

Higher Education Funding Council for England

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3