Mechanism for large-scale canyon deformations due to filling of large reservoir of hydropower project

Author:

Jiang Hui,Zhang Chu-Han,Zhou Yuan-De,Pan Jian-Wen,Wang Jin-Ting,Wu Ming-Xin,Fan Qi-Xiang

Abstract

AbstractLarge storage dam projects may modify geo-environmental conditions in many ways. The reservoir impoundment of the 285.5 m high Xiluodu arch dam located on the Jinsha River (China) caused large-scale canyon deformations, including significant canyon contraction and uplift movements from reservoir to downstream valley. The dam experienced subsequent tilting towards upstream and raised a safety concern of the project. A Thermo-Hydro-Mechanical (THM) mechanism is proposed for this extraordinary behavior. Due to reservoir impounding and seepage, significant temperature drops and fluid pressure increase within the underlying geothermal limestone aquifer in a synclinal basin are primary root causes. Finite element THM simulations successfully reproduce these unique deformations. Recent observations of large quantities of thermalized discharge water downstream and high pore pressure in the limestone layer provide further support for the proposed mechanism. Furthermore, refined numerical modeling is adopted to evaluate the safety of Xiluodu dam subjected to potential larger canyon contractions. We conclude that these unprecedented phenomena are dominantly the consequence of THM response to regional hydrogeological evolution following the build-up of a large reservoir. The accumulated canyon contractions at the current stage would not pose a direct threat to the dam safety, but a tripled situation may cause severe safety issues.

Funder

National Natural Science Foundation of China

China Three Gorges Corporation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3