Selective Induction of Human Autonomic Neurons Enables Precise Control of Cardiomyocyte Beating

Author:

Takayama Yuzo,Kushige Hiroko,Akagi Yuka,Suzuki Yutaka,Kumagai Yutaro,Kida Yasuyuki S.

Abstract

AbstractThe autonomic nervous system (ANS) regulates tissue homeostasis and remodelling through antagonistic effects of noradrenergic sympathetic and cholinergic parasympathetic signalling. Despite numerous reports on the induction of sympathetic neurons from human pluripotent stem cells (hPSCs), no induction methods have effectively derived cholinergic parasympathetic neurons from hPSCs. Considering the antagonistic effects of noradrenergic and cholinergic inputs on target organs, both sympathetic and parasympathetic neurons are expected to be induced. This study aimed to develop a stepwise chemical induction method to induce sympathetic-like and parasympathetic-like ANS neurons. Autonomic specification was achieved through restricting signals inducing sensory or enteric neurogenesis and activating bone morphogenetic protein (BMP) signals. Global mRNA expression analyses after stepwise induction, including single-cell RNA-seq analysis of induced neurons and functional assays revealed that each induced sympathetic-like or parasympathetic-like neuron acquired pharmacological and electrophysiological functional properties with distinct marker expression. Further, we identified selective induction methods using appropriate seeding cell densities and neurotrophic factor concentrations. Neurons were individually induced, facilitating the regulation of the beating rates of hiPSC-derived cardiomyocytes in an antagonistic manner. The induction methods yield specific neuron types, and their influence on various tissues can be studied by co-cultured assays.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference46 articles.

1. Schnerch, A., Cerdan, C. & Bhatia, M. Distinguishing between mouse and human pluripotent stem cell regulation: the best laid plans of mice and men. Stem Cells 28, 419–430 (2010).

2. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110, 3507–3512 (2013).

3. Marx, U. et al. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272–321 (2016).

4. Slaugenhaupt, S. A. & Gusella, J. F. Familial dysautonomia. Curr. Opin. Genet. Dev. 12, 307–311 (2002).

5. Edwards, J. L., Vincent, A. M., Cheng, H. T. & Feldman, E. L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther. 120, 1–34 (2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3