Author:
Takayama Yuzo,Kushige Hiroko,Akagi Yuka,Suzuki Yutaka,Kumagai Yutaro,Kida Yasuyuki S.
Abstract
AbstractThe autonomic nervous system (ANS) regulates tissue homeostasis and remodelling through antagonistic effects of noradrenergic sympathetic and cholinergic parasympathetic signalling. Despite numerous reports on the induction of sympathetic neurons from human pluripotent stem cells (hPSCs), no induction methods have effectively derived cholinergic parasympathetic neurons from hPSCs. Considering the antagonistic effects of noradrenergic and cholinergic inputs on target organs, both sympathetic and parasympathetic neurons are expected to be induced. This study aimed to develop a stepwise chemical induction method to induce sympathetic-like and parasympathetic-like ANS neurons. Autonomic specification was achieved through restricting signals inducing sensory or enteric neurogenesis and activating bone morphogenetic protein (BMP) signals. Global mRNA expression analyses after stepwise induction, including single-cell RNA-seq analysis of induced neurons and functional assays revealed that each induced sympathetic-like or parasympathetic-like neuron acquired pharmacological and electrophysiological functional properties with distinct marker expression. Further, we identified selective induction methods using appropriate seeding cell densities and neurotrophic factor concentrations. Neurons were individually induced, facilitating the regulation of the beating rates of hiPSC-derived cardiomyocytes in an antagonistic manner. The induction methods yield specific neuron types, and their influence on various tissues can be studied by co-cultured assays.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Schnerch, A., Cerdan, C. & Bhatia, M. Distinguishing between mouse and human pluripotent stem cell regulation: the best laid plans of mice and men. Stem Cells 28, 419–430 (2010).
2. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110, 3507–3512 (2013).
3. Marx, U. et al. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272–321 (2016).
4. Slaugenhaupt, S. A. & Gusella, J. F. Familial dysautonomia. Curr. Opin. Genet. Dev. 12, 307–311 (2002).
5. Edwards, J. L., Vincent, A. M., Cheng, H. T. & Feldman, E. L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther. 120, 1–34 (2008).
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献