Prediction of various freshness indicators in fish fillets by one multispectral imaging system

Author:

Khoshnoudi-Nia Sara,Moosavi-Nasab Marzieh

Abstract

Abstract In current study, a simple multispectral imaging (430–1010 nm) system along with linear and non-linear regressions were used to assess the various fish spoilage indicators during 12 days storage at 4 ± 2 °C. The indicators included Total-Volatile Basic Nitrogen (TVB-N) and Psychrotrophic Plate Count (PPC) and sensory score in fish fillets. immediately, after hyperspectral imaging, the reference values (TVB-N, PPC and sensory score) of samples were obtained by traditional method. To simplify the calibration models, nine optimal wavelengths were selected by genetic algorithm. The prediction performance of various chemometric models including partial least-squares regression (PLSR), multiple-linear regression (MLR), least-squares support vector machine (LS-SVM) and back-propagation artificial neural network (BP-ANN) were compared. All models showed acceptable performance for simultaneous predicting of PPC, TVB-N and sensory score (R2P ≥ 0.853 and RPD ≥ 2.603). Non-linear models were considered better quantitative model to predict all of three freshness indicators in fish fillets. Among the three spoilage indices, the best predictive power was obtained for PPC value and the weakest one was acquired for TVB-N content prediction. The best model for prediction TVB-N (R2p = 0.862; RMSEP = 3.542 and RPD = 2.678) and sensory score (R2p = 0.912; RMSEP = 1.802 and RPD = 3.33) belonged to GA-LS-SVM and for prediction of PPC value was BP-ANN (R2p = 0.921; RMSEP = 0.504 and RPD = 3.64). Therefore, developing multispectral imaging system based on LS-SVM model seems to be suitable for simultaneous prediction of all three indicators (R2P > 0.862 and RPD > 2.678). Further studies needed to improve the accuracy and applicability of HSI system for predicting freshness of rainbow-trout fish.

Funder

Shiraz University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3