Quantification of cavitating flows with neutron imaging

Author:

Karathanassis I. K.,Heidari-Koochi M.,Koukouvinis F.,Weiss L.,Trtik P.,Spivey D.,Wensing M.,Gavaises M.

Abstract

AbstractThe current experimental investigation demonstrates the capability of neutron imaging to quantify cavitation, in terms of vapour content, within an orifice of an abruptly constricting geometry. The morphology of different cavitation regimes setting in was properly visualised owing to the high spatial resolution of 16 μm achieved, given the extensive field of view of 12.9 × 12.9 mm2 offered by the imaging set-up. At a second step, the method was proven capable of highlighting subtle differences between fluids of different rheological properties. More specifically, a reference liquid was comparatively assessed against a counterpart additised with a Quaternary Ammonium Salt (QAS) agent, thus obtaining a viscoelastic behaviour. In accordance with previous studies, it was verified, yet in a quantifiable manner, that the presence of viscoelastic additives affects the overall cavitation topology by promoting the formation of more localised vortical cavities rather than cloud-like structures occupying a larger portion of the orifice core. To the authors’ best knowledge, the present work is the first to demonstrate that neutron imaging is suitable for quantifying in-nozzle cavitating flow at the micrometre level, consequently elucidating the distinct forms of vaporous structures that arise. The potential of incorporating neutron irradiation for the quantification of two-phase flows in metallic microfluidics devices has been established.

Funder

European Commission

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3