Using random forest to identify longitudinal predictors of health in a 30-year cohort study

Author:

Loef Bette,Wong Albert,Janssen Nicole A. H.,Strak Maciek,Hoekstra Jurriaan,Picavet H. Susan J.,Boshuizen H. C. Hendriek,Verschuren W. M. Monique,Herber Gerrie-Cor M.

Abstract

AbstractDue to the wealth of exposome data from longitudinal cohort studies that is currently available, the need for methods to adequately analyze these data is growing. We propose an approach in which machine learning is used to identify longitudinal exposome-related predictors of health, and illustrate its potential through an application. Our application involves studying the relation between exposome and self-perceived health based on the 30-year running Doetinchem Cohort Study. Random Forest (RF) was used to identify the strongest predictors due to its favorable prediction performance in prior research. The relation between predictors and outcome was visualized with partial dependence and accumulated local effects plots. To facilitate interpretation, exposures were summarized by expressing them as the average exposure and average trend over time. The RF model’s ability to discriminate poor from good self-perceived health was acceptable (Area-Under-the-Curve = 0.707). Nine exposures from different exposome-related domains were largely responsible for the model’s performance, while 87 exposures seemed to contribute little to the performance. Our approach demonstrates that ML can be interpreted more than widely believed, and can be applied to identify important longitudinal predictors of health over the life course in studies with repeated measures of exposure. The approach is context-independent and broadly applicable.

Funder

This study was funded by the Strategic Program project “COMPLEXA” of the Dutch National Institute for Public Health and the Environment (RIVM).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3