Dynamic input-dependent encoding of individual basal ganglia neurons

Author:

Matzner Ayala,Gorodetski Lilach,Korngreen Alon,Bar-Gad Izhar

Abstract

AbstractComputational models are crucial to studying the encoding of individual neurons. Static models are composed of a fixed set of parameters, thus resulting in static encoding properties that do not change under different inputs. Here, we challenge this basic concept which underlies these models. Using generalized linear models, we quantify the encoding and information processing properties of basal ganglia neurons recorded in-vitro. These properties are highly sensitive to the internal state of the neuron due to factors such as dependency on the baseline firing rate. Verification of these experimental results with simulations provides insights into the mechanisms underlying this input-dependent encoding. Thus, static models, which are not context dependent, represent only part of the neuronal encoding capabilities, and are not sufficient to represent the dynamics of a neuron over varying inputs. Input-dependent encoding is crucial for expanding our understanding of neuronal behavior in health and disease and underscores the need for a new generation of dynamic neuronal models.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Nonlinear Spatial Integrations on Encoding Contrasting Stimuli of Tectal Neurons;Animals;2024-05-26

2. Encoding and decoding models;Reference Module in Neuroscience and Biobehavioral Psychology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3