Molecular characteristics of the first case of haloxyfop-resistant Poa annua

Author:

Ghanizadeh H.,Mesarich C. H.,Harrington K. C.

Abstract

AbstractHaloxyfop is one of two acetyl-coenzyme A carboxylase (ACCase) inhibitors that is recommended for controlling Poa annua. We have characterised a population of P. annua that had developed resistance to haloxyfop. This resistant population was found to be almost 20 times less sensitive to haloxyfop than a susceptible population based on percentage survival of individuals in two dose-response experiments. However, the haloxyfop-resistant population was still susceptible to clethodim. Pre-treatment of resistant individuals with a cytochrome P450 inhibitor, malathion, did not change the sensitivity level of the resistant plants to haloxyfop, suggesting that a non-target site mechanism of resistance involving enhanced metabolism, was not responsible for this resistance in P. annua. Gene sequencing showed that a target site mutation at position 2041, which replaced isoleucine with threonine in the carboxyltransferase (CT) domain of the ACCase enzyme, was associated with resistance to haloxyfop in the resistant population. An evaluation of the 3-D structure of the CT domain suggested that, unlike Asn-2041, which is the most common mutation at this position reported to date, Thr-2041 does not change the conformational structure of the CT domain. This is the first study investigating the molecular mechanism involved with haloxyfop resistance in P. annua.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3