Development of artificial intelligence prognostic model for surgically resected non-small cell lung cancer

Author:

Kinoshita Fumihiko,Takenaka Tomoyoshi,Yamashita Takanori,Matsumoto Koutarou,Oku Yuka,Ono Yuki,Wakasu Sho,Haratake Naoki,Tagawa Tetsuzo,Nakashima Naoki,Mori Masaki

Abstract

AbstractThere are great expectations for artificial intelligence (AI) in medicine. We aimed to develop an AI prognostic model for surgically resected non-small cell lung cancer (NSCLC). This study enrolled 1049 patients with pathological stage I–IIIA surgically resected NSCLC at Kyushu University. We set 17 clinicopathological factors and 30 preoperative and 22 postoperative blood test results as explanatory variables. Disease-free survival (DFS), overall survival (OS), and cancer-specific survival (CSS) were set as objective variables. The eXtreme Gradient Boosting (XGBoost) was used as the machine learning algorithm. The median age was 69 (23–89) years, and 605 patients (57.7%) were male. The numbers of patients with pathological stage IA, IB, IIA, IIB, and IIIA were 553 (52.7%), 223 (21.4%), 100 (9.5%), 55 (5.3%), and 118 (11.2%), respectively. The 5-year DFS, OS, and CSS rates were 71.0%, 82.8%, and 88.7%, respectively. Our AI prognostic model showed that the areas under the curve of the receiver operating characteristic curves of DFS, OS, and CSS at 5 years were 0.890, 0.926, and 0.960, respectively. The AI prognostic model using XGBoost showed good prediction accuracy and provided accurate predictive probability of postoperative prognosis of NSCLC.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3