Machine learning-based prediction model for myocardial ischemia under high altitude exposure: a cohort study

Author:

Chen Yu,Zhang Xin,Ye Qing,Zhang Xin,Cao Ning,Li Shao-Ying,Yu Jie,Zhao Sheng-Tao,Zhang Juan,Xu Xin-Ming,Shi Yan-Kun,Yang Li-Xia

Abstract

AbstractHigh altitude exposure increases the risk of myocardial ischemia (MI) and subsequent cardiovascular death. Machine learning techniques have been used to develop cardiovascular disease prediction models, but no reports exist for high altitude induced myocardial ischemia. Our objective was to establish a machine learning-based MI prediction model and identify key risk factors. Using a prospective cohort study, a predictive model was developed and validated for high-altitude MI. We consolidated the health examination and self-reported electronic questionnaire data (collected between January and June 2022 in 920th Joint Logistic Support Force Hospital of china) of soldiers undergoing high-altitude training, along with the health examination and second self-reported electronic questionnaire data (collected between December 2022 and January 2023) subsequent to their completion on the plateau, into a unified dataset. Participants were subsequently allocated to either the training or test dataset in a 3:1 ratio using random assignment. A predictive model based on clinical features, physical examination, and laboratory results was designed using the training dataset, and the model's performance was evaluated using the area under the receiver operating characteristic curve score (AUC) in the test dataset. Using the training dataset (n = 2141), we developed a myocardial ischemia prediction model with high accuracy (AUC = 0.86) when validated on the test dataset (n = 714). The model was based on five laboratory results: Eosinophils percentage (Eos.Per), Globulin (G), Ca, Glucose (GLU), and Aspartate aminotransferase (AST). Our concise and accurate high-altitude myocardial ischemia incidence prediction model, based on five laboratory results, may be used to identify risks in advance and help individuals and groups prepare before entering high-altitude areas. Further external validation, including female and different age groups, is necessary.

Funder

Military Medical Research Program Growth Project

Joint Special Fund for Application and Basic Research of Kunming Medical University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3