SETD5 regulates the OGT-catalyzed O-GlcNAcylation of RNA polymerase II, which is involved in the stemness of colorectal cancer cells

Author:

Cho Hye In,Jo Sora,Kim Min Seong,Kim Han Byeol,Liu Xingzhe,Xuan Yanhua,Cho Jin Won,Jang Yeun Kyu

Abstract

AbstractThe dosage-dependent recruitment of RNA polymerase II (Pol II) at the promoters of genes related to neurodevelopment and stem cell maintenance is required for transcription by the fine-tuned expression of SET-domain-containing protein 5 (SETD5). Pol II O-GlcNAcylation by O-GlcNAc transferase (OGT) is critical for preinitiation complex formation and transcription cycling. SETD5 dysregulation has been linked to stem cell-like properties in some cancer types; however, the role of SETD5 in cancer cell stemness has not yet been determined. We here show that aberrant SETD5 overexpression induces stemness in colorectal cancer (CRC) cells. SETD5 overexpression causes the upregulation of PI3K-AKT pathway-related genes and cancer stem cell (CSC) markers such as CD133, Kruppel-like factor 4 (KLF4), and estrogen-related receptor beta (ESRRB), leading to the gain of stem cell-like phenotypes. Our findings also revealed a functional relationship between SETD5, OGT, and Pol II. OGT-catalyzed Pol II glycosylation depends on SETD5, and the SETD5-Pol II interaction weakens in OGT-depleted cells, suggesting a SETD5-OGT-Pol II interdependence. SETD5 deficiency reduces Pol II occupancy at PI3K-AKT pathway-related genes and CD133 promoters, suggesting a role for SETD5-mediated Pol II recruitment in gene regulation. Moreover, the SETD5 depletion nullified the SETD5-induced stemness of CRC cells and Pol II O-GlcNAcylation. These findings support the hypothesis that SETD5 mediates OGT-catalyzed O-GlcNAcylation of RNA Pol II, which is involved in cancer cell stemness gain via CSC marker gene upregulation.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3