Author:
Esaki Muthu Pandara Kone Shrinathan,Yatsugi Kenichi,Iizuka Hideo
Abstract
AbstractMotors arise as a heart of the mobility society, and wirelessly operated motors may improve our standard of living. Wireless power transfer in the kilohertz and megahertz range has been extensively explored, finding various potential applications in consumer electronics, electric vehicles, and medical implants. However, stable operation of wirelessly powered motors remains challenging due to voltage fluctuations for motors occurring in dynamic scenarios, e.g., the rotating speed of the motors is varied. Here, we theoretically and experimentally demonstrate the operation of a motor, where the power is wirelessly transferred via coils, is robust against the rotating speed by employing the analogy with non-Hermitian parity-time (PT) symmetry. In addition, our system is robust for misalignment of the coils. Our results open up opportunities for the robust operation of motors via wireless power transfer in dynamic scenarios towards autonomous vehicles.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献