Author:
Udayan Sreeram,Buttó Ludovica F.,Rossini Valerio,Velmurugan Janaki,Martinez-Lopez Maria,Sancho David,Melgar Silvia,O’Toole Paul W.,Nally Ken
Abstract
AbstractThe mechanisms through which cells of the host innate immune system distinguish commensal bacteria from pathogens are currently unclear. Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) expressed by host cells which recognize microbe-associated molecular patterns (MAMPs) common to both commensal and pathogenic bacteria. Of the different TLRs, TLR2/6 recognize bacterial lipopeptides and trigger cytokines responses, especially to Gram-positive and Gram-negative pathogens. We report here that TLR2 is dispensable for triggering macrophage cytokine responses to different strains of the Gram-positive commensal bacterial species Lactobacillus salivarius. The L. salivarius UCC118 strain strongly upregulated expression of the PRRs, Mincle (Clec4e), TLR1 and TLR2 in macrophages while downregulating other TLR pathways. Cytokine responses triggered by L. salivarius UCC118 were predominantly TLR2-independent but MyD88-dependent. However, macrophage cytokine responses triggered by another Gram-positive commensal bacteria, Bifidobacterium breve UCC2003 were predominantly TLR2-dependent. Thus, we report a differential requirement for TLR2-dependency in triggering macrophage cytokine responses to different commensal Gram-positive bacteria. Furthermore, TNF-α responses to the TLR2 ligand FSL-1 and L. salivarius UCC118 were partially Mincle-dependent suggesting that PRR pathways such as Mincle contribute to the recognition of MAMPs on distinct Gram-positive commensal bacteria. Ultimately, integration of signals from these different PRR pathways and other MyD88-dependent pathways may determine immune responses to commensal bacteria at the host-microbe interface.
Funder
Science Foundation Ireland
Publisher
Springer Science and Business Media LLC
Reference75 articles.
1. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).
2. Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 108(Suppl 1), 4586–4591 (2011).
3. Smelt, M.J. et al. L. plantarum, L. salivarius, and L. lactis attenuate Th2 responses and increase Treg frequencies in healthy mice in a strain dependent manner. PLoS One 7, e47244 (2012).
4. Liu, X. et al. Lactobacillus salivarius isolated from patients with rheumatoid arthritis suppresses collagen-induced arthritis and increases treg frequency in mice. J. Interferon Cytokine Res. 36, 706–712 (2016).
5. Peran, L. et al. Preventative effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis. World J. Gastroenterol. 11, 5185–5192 (2005).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献