Author:
Ghosal Rahul,Varma Vijay R.,Volfson Dmitri,Urbanek Jacek,Hausdorff Jeffrey M.,Watts Amber,Zipunnikov Vadim
Abstract
AbstractWearable data is a rich source of information that can provide a deeper understanding of links between human behaviors and human health. Existing modelling approaches use wearable data summarized at subject level via scalar summaries in regression, temporal (time-of-day) curves in functional data analysis (FDA), and distributions in distributional data analysis (DDA). We propose to capture temporally local distributional information in wearable data using subject-specific time-by-distribution (TD) data objects. Specifically, we develop scalar on time-by-distribution regression (SOTDR) to model associations between scalar response of interest such as health outcomes or disease status and TD predictors. Additionally, we show that TD data objects can be parsimoniously represented via a collection of time-varying L-moments that capture distributional changes over the time-of-day. The proposed method is applied to the accelerometry study of mild Alzheimer’s disease (AD). We found that mild AD is significantly associated with reduced upper quantile levels of physical activity, particularly during morning hours. In-sample cross validation demonstrated that TD predictors attain much stronger associations with clinical cognitive scales of attention, verbal memory, and executive function when compared to predictors summarized via scalar total activity counts, temporal functional curves, and quantile functions. Taken together, the present results suggest that SOTDR analysis provides novel insights into cognitive function and AD.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献