Accurate measurement techniques and prediction approaches for the in-situ rock stress

Author:

Li Peng,Cai Meifeng,Miao Shengjun,Li Yuan,Sun Liang,Wang Jiangtao,Gorjian Mostafa

Abstract

AbstractThe precise calculation and evaluation of the in-situ rock stress tensor is a crucial factor in addressing the major challenges related to subsurface engineering applications and earth science research. To improve the accuracy of in-situ stress measurement and prediction, an improved overcoring technique involving a measurement circuit, temperature compensation, and calculation method is presented for accurately measuring the in-situ rock stress tensor. Furthermore, an embedded grey BP neural network (GM–BPNN) model is established for predicting in-situ rock stress values. The results indicate that the improved overcoring technique has significantly improved the stress measurement accuracy, and a large number of valuable stress data obtained from many mines have proved the testing performance of this technique. Moreover, the mean relative errors of the prediction results of GM(0, 1) for the three principal stresses all reach 6–30%, and the accuracy of the model fails to meet the requirements. The average relative errors of the prediction results of the BPNN model are all less than 10%, and the model accuracy meets the requirements and has sufficient credibility. Compared with the GM and BPNN models, the embedded GM–BPNN model produces the best results, with mean relative errors of 0.0001–4.8338%. The embedded GM–BPNN model fully utilizes the characteristics of grey theory and BP neural network, which require a small sample size, weaken the randomness of the original data, and gradually approach the accuracy of the model, making it particularly suitable for situations with limited stress data.

Funder

National Natural Science Foundation of China

Open Research Fund of The State Key Laboratory of Coal Resources and safe Mining, CUMT

Interdisciplinary Research Project for Young Teachers of USTB

Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program

National Key R&D Program of China

Science, Technology & Innovation Project of Xiongan New Area

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3